Faktor yang mempengaruhi laju reaksi
Laju reaksi dipengaruhi oleh beberapa faktor, antara lain:
Luas permukaan sentuh
Luas permukaan sentuh memiliki peranan yang sangat penting dalam banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi ; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.
Suhu
Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.
Katalis
Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
Katalis dapat dibedakan ke dalam dua golongan utama: katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.
Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantarakimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:
A + C → AC (1)
B + AC → AB + C (2)
Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :
A + B + C → AB + C
Beberapa katalis yang pernah dikembangkan antara lain berupa katalis Ziegler-Natta yang digunakan untuk produksi masal polietilen dan polipropilen. Reaksi katalitis yang paling dikenal adalah proses Haber, yaitu sintesis amoniak menggunakan besi biasa sebagai katalis. Konverter katalitik yang dapat menghancurkan produk emisi kendaraan yang paling sulit diatasi, terbuat dari platina dan rodium.
Molaritas
Molaritas adalah banyaknya mol zat terlarut tiap satuan volum zat pelarut. Hubungannya dengan laju reaksi adalah bahwa semakin besar molaritas suatu zat, maka semakin cepat suatu reaksi berlangsung. Dengan demikian pada molaritas yang rendah suatu reaksi akan berjalan lebih lambat daripada molaritas yang tinggi. Hubungan antara laju reaksi dengan molaritas adalah:
V = k [A]m [B]n
dengan:
- V = Laju reaksi
- k = Konstanta kecepatan reaksi
- m = Orde reaksi zat A
- n = Orde reaksi zat B
Konsentrasi
Karena persamaan laju reaksi didefinisikan dalam bentuk konsentrsi reaktan maka dengan naiknya konsentrasi maka naik pula kecepatan reaksinya. Artinya semakin tinggi konsentrasi maka semakin banyak molekul reaktan yang tersedia denngan demikian kemungkinan bertumbukan akan semakin banyak juga sehingga kecepatan reaksi meningkat.
Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.
Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator.
A. KONSENTRASI
Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.
B. SIFAT ZAT YANG BEREAKSI
Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi.
Secara umum dinyatakan bahwa:
- | Reaksi antara senyawa ion umumnya berlangsung cepat. Hal ini disebabkan oleh adanya Contoh: Ca2+(aq) + CO32+(aq) ® CaCO3(s) Reaksi ini berlangsung dengan cepat. |
- | Reaksi antara senyawa kovalen umumnya berlangsung lambat. Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi. Contoh: CH4(g) + Cl2(g) ® CH3Cl(g) + HCl(g) Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari. |
C. SUHU
Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi ARRHENIUS:
k = A . e-E/RT |
dimana:
k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)
k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)
D. KATALISATOR
Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi.
Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalan memperkecil energi pengaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat.
Reaksi yang dapat berlangsung dalam dua arah disebut reaksi dapat balik. Apabila dalam suatu reaksi kimia, kecepatan reaksi ke kanan sama dengan kecepatan reaksi ke kiri maka, reaksi dikatakan dalam keadaan setimbang. Secara umum reaksi kesetimbangan dapat dinyatakan sebagai:
A + B ® C + D |
1. | Kesetimbangan dalam sistem homogen
| ||||||
2. | Kesetimbangan dalam sistem heterogen
|
Hukum Guldberg dan Wange: | Dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap. |
Pernyataan tersebut juga dikenal sebagai hukum kesetimbangan.
Untuk reaksi kesetimbangan: a A + b B « c C + d D maka:
Untuk reaksi kesetimbangan: a A + b B « c C + d D maka:
Kc = (C)c x (D)d / (A)a x (B)b |
Kc adalah konstanta kesetimbangan yang harganya tetap selama suhu tetap.
BEBERAPA HAL YANG HARUS DIPERHATIKAN
- | Jika zat-zat terdapat dalam kesetimbangan berbentuk padat dan gas yang dimasukkan dalam, persamaan kesetimbangan hanya zat-zat yang berbentuk gas saja sebab konsentrasi zat padat adalah tetap den nilainya telah terhitung dalam harga Kc itu. Contoh: C(s) + CO2(g) « 2CO(g) Kc = (CO)2 / (CO2) |
- | Jika kesetimbangan antara zat padat dan larutan yang dimasukkan dalam perhitungan Kc hanya konsentrasi zat-zat yang larut saja. Contoh: Zn(s) + Cu2+(aq) « Zn2+(aq) + Cu(s) Kc = (Zn2+) / (CO2+) |
- | Untuk kesetimbangan antara zat-zat dalam larutan jika pelarutnya tergolong salah satu reaktan atau hasil reaksinya maka konsentrasi dari pelarut itu tidak dimasukkan dalam perhitungan Kc. Contoh: CH3COO-(aq) + H2O(l) « CH3COOH(aq) + Kc = (CH3COOH) x ( |
Azas Le Chatelier menyatakan: Bila pada sistem kesetimbangan diadakan aksi, maka sistem akan mengadakan reaksi sedemikian rupa sehingga pengaruh aksi itu menjadi sekecil-kecilnya.
Perubahan dari keadaan kesetimbangan semula ke keadaan kesetimbangan yang baru akibat adanya aksi atau pengaruh dari luar itu dikenal dengan pergeseran kesetimbangan.
Bagi reaksi:
A + B « C + D |
KEMUNGKINAN TERJADINYA PERGESERAN
1. | Dari kiri ke kanan, berarti A bereaksi dengan B memhentuk C dan D, sehingga jumlah mol A dan Bherkurang, sedangkan C dan D bertambah. |
2. | Dari kanan ke kiri, berarti C dan D bereaksi membentuk A dan B. sehingga jumlah mol C dan Dherkurang, sedangkan A dan B bertambah. |
FAKTOR-FAKTOR YANG DAPAT MENGGESER LETAK KESETIMBANGAN ADALAH :
a. Perubahan konsentrasi salah satu zat
b. Perubahan volume atau tekanan
c. Perubahan suhu
b. Perubahan volume atau tekanan
c. Perubahan suhu
A. PERUBAHAN KONSENTRASI SALAH SATU ZAT
Apabila dalam sistem kesetimbangan homogen, konsentrasi salah satu zat diperbesar, maka kesetimbangan akan bergeser ke arah yang berlawanan dari zat tersebut. Sebaliknya, jika konsentrasi salah satu zat diperkecil, maka kesetimbangan akan bergeser ke pihak zat tersebut.
Contoh: 2SO2(g) + O2(g) « 2SO3(g)
- Bila pada sistem kesetimbangan ini ditambahkan gas SO2, maka kesetimbangan akan bergeser ke kanan.
- Bila pada sistem kesetimbangan ini dikurangi gas O2, maka kesetimbangan akan bergeser ke kiri.
- Bila pada sistem kesetimbangan ini dikurangi gas O2, maka kesetimbangan akan bergeser ke kiri.
B. PERUBAHAN VOLUME ATAU TEKANAN
Jika dalam suatu sistem kesetimbangan dilakukan aksi yang menyebabkan perubahan volume (bersamaan dengan perubahan tekanan), maka dalam sistem akan mengadakan berupa pergeseran kesetimbangan.
Jika tekanan diperbesar = volume diperkecil, kesetimbangan akan bergeser ke arah jumlah Koefisien Reaksi Kecil. Jika tekanan diperkecil = volume diperbesar, kesetimbangan akan bergeser ke arah jumlah Koefisien reaksi besar. Pada sistem kesetimbangan dimana jumlah koefisien reaksi sebelah kiri = jumlah koefisien sebelah kanan, maka perubahan tekanan/volume tidak menggeser letak kesetimbangan. |
Contoh:
N2(g) + 3H2(g) « 2NH3(g)
Koefisien reaksi di kanan = 2
Koefisien reaksi di kiri = 4
Koefisien reaksi di kanan = 2
Koefisien reaksi di kiri = 4
- | Bila pada sistem kesetimbangan tekanan diperbesar (= volume diperkecil), maka kesetimbangan akan bergeser ke kanan. |
- | Bila pada sistem kesetimbangan tekanan diperkecil (= volume diperbesar), maka kesetimbangan akan bergeser ke kiri. |
C. PERUBAHAN SUHU
Menurut Van't Hoff:
Menurut Van't Hoff:
- | Bila pada sistem kesetimbangan subu dinaikkan, maka kesetimbangan reaksi akan bergeser ke arah yang membutuhkan kalor (ke arah reaksi endoterm). |
- | Bila pada sistem kesetimbangan suhu diturunkan, maka kesetimbangan reaksi akan bergeser ke arah yang membebaskan kalor (ke arah reaksi eksoterm). Contoh: 2NO(g) + O2(g) « 2NO2(g) ; DH = -216 kJ |
- | Jika suhu dinaikkan, maka kesetimbangan akan bergeser ke kiri. |
- | Jika suhu diturunkan, maka kesetimbangan akan bergeser ke kanan. |
PENGARUH KATALISATOR TERHADAP KESETIMBANGAN
Fungsi katalisator dalam reaksi kesetimbangan adalah mempercepat tercapainya kesetimbangan dan tidak merubah letak kesetimbangan (harga tetapan kesetimbangan Kc tetap), hal ini disebabkan katalisator mempercepat reaksi ke kanan dan ke kiri sama besar.
HUBUNGAN ANTARA HARGA Kc DENGAN Kp
Untuk reaksi umum:
a A(g) + b B(g) « c C(g) + d D(g)
Untuk reaksi umum:
a A(g) + b B(g) « c C(g) + d D(g)
Harga tetapan kesetimbangan:
Kc = [(C)c . (D)d] / [(A)a . (B)b]
Kp = (PCc x PDd) / (PAa x PBb)
dimana: PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B. C dan D.
Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:
Kp = Kc (RT) Dn
dimana Dn adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).
Disosiasi adalah penguraian suatu zat menjadi beberapa zat lain yang lebih sederhana.
Derajat disosiasi adalah perbandingan antara jumlah mol yang terurai dengan jumlah mol mula-mula.
Contoh:
2NH3(g) « N2(g) + 3H2(g)
besarnya nilai derajat disosiasi (a):
a = mol NH3 yang terurai / mol NH3 mula-mula |
Harga derajat disosiasi terletak antara 0 dan 1, jika:
a = 0 berarti tidak terjadi penguraian
a = 1 berarti terjadi penguraian sempurna
0 < a < 1 berarti disosiasi pada reaksi setimbang (disosiasi sebagian).
a = 1 berarti terjadi penguraian sempurna
0 < a < 1 berarti disosiasi pada reaksi setimbang (disosiasi sebagian).
Contoh:
Dalam reaksi disosiasi N2O4 berdasarkan persamaan
N2O4(g) « 2NO2(g)
banyaknya mol N2O4 dan NO2 pada keadaan setimbang adalah sama.
N2O4(g) « 2NO2(g)
banyaknya mol N2O4 dan NO2 pada keadaan setimbang adalah sama.
Pada keadaan ini berapakah harga derajat disosiasinya ?
Jawab:
Misalkan mol N2O4 mula-mula = a mol
mol N2O4 yang terurai = a a mol ® mol N2O4 sisa = a (1 - a) mol
mol NO2 yang terbentuk = 2 x mol N2O4 yang terurai = 2 a a mol
mol N2O4 yang terurai = a a mol ® mol N2O4 sisa = a (1 - a) mol
mol NO2 yang terbentuk = 2 x mol N2O4 yang terurai = 2 a a mol
Pada keadaan setimbang:
mol N2O4 sisa = mol NO2 yang terbentuk
a(1 - a) = 2a a ® 1 - a = 2 a ® a = 1/3
Tidak ada komentar:
Posting Komentar